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Abstract. Linear two-level programming deals with optimization problems in which the constraint 
region is implicity determined by another optimization problem. Mathematical programs of this type 
arise in connection with policy problems to which the Stackelberg leader-follower game is applicable. 
In this paper, the linear two-level programming problem is restated as a global optimization problem 
and a new solution method based on this approach is developed. The most important feature of this 
new method is that it attempts to take full advantage of the structure in the constraints using some 
recent global optimization techniques. A small example is solved in order to illustrate the approach. 
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1. Introduction 

Linear two-level programming, a special case of multi-level programming, deals 
with optimization problems in which the constraint region is implicitly determined 
by another optimization problem. 

The model can be considered as a two-person game where one of the players, 
the leader, knows the cost function mapping of the second player, the follower, 
who may or may not know the cost function of the leader. The follower knows 
however the strategy of the leader and takes this into account when computing his 
own strategy. The leader can foresee the reactions of the follower and can 
therefore optimize his choice of strategy. 

The basic leader/follower strategy was originally proposed for a duopoly by von 
Stackelberg [17]. Of particular interest in the range of policy problems to which 
the Stackelberg game is applicable are certain hierarchical decision-making 
systems in mixed economies where policy makers at the top level influence the 
decisions of private individuals and companies. In order to reduce a country's 
dependence on imported energy resources, for instance, a government can impose 
retail sales tax, import quotas and rationing. The energy consumption of in- 
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dividuals and companies will consequently adjust their consumption in accordance 
with respect to the resulting availability and prices. This will in turn affect import 
levels, the general price level and government revenue. 

With respect to land-use policies [6], a government can decide to invest in order 
to provide transportation and communication infrastructures. Individual farmers 
and traders can then make their own decisions about production and marketing. 

The basic Stackelberg game involves two players. The first one chooses strategy 
x and the second player chooses strategy y. The cost function associated with the 
first player is 

crx + dry 

and the cost function of the second player is 

c~c + dry .  

Designating the first player as leader and the second as follower, we have the 
following scenario: 

For each decision x that the leader takes, the follower chooses y = to(x), where 
to is a mapping from x to y such that 

T ~ T  z x ~  T T C2X "Jr- a2to[x ) ~ c2x + d2y (I) 

for all feasible y. The leader chooses x* such that 

crx * + drto(x *) <<- crx + drto(x) (If) 

for all feasible x. 
The strategy x* is the Stackelberg strategy for the first player while y* = to(x*) 

is the Stackelberg strategy for the second player. 
Inequalities (I) and (II) suggest the following two-level optimization problem, 

where the first level problem, the outer problem, is associated with the leader, 
while the second level problem, the inner problem, is associated with the 
follower. 

(P) min c'(x + dry (1) 
x ~ 0  

s.t. A i x + Bly <~ gl (2) 

where y solves 

min c2rx + dry (3) 
y~>0 

s.t. A2x + Bzy <~ g2 (4) 

(x E R p, y E R q, gl ~ Rml, g2 E R m2) . 

A great deal of progress has been made in developing algorithms for this 
problem. The first class of methods to be mentioned is based on enumeration 
techniques. The motivation for choosing such an approach arises from the fact 
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that an optimal solution to problem (P) can be found which is a basic feasible 
solution of the set of all linear constraints in the model. In such a case, we need a 
procedure that enumerates the vertices of the feasible set in an efficient way. The 
most widely known algorithms based on this approach are the enumeration 
method by Candler and Townsley [7], "The Kth best algorithm" by Bialas and 
Karwan [5] and the B&B-algorithm by Moore and Bard [4]. 

Another straightforward approach is to replace the inner problem by its 
corresponding Karush-Kuhn-Tucker conditions and hence obtain an ordinary 
mathematical programming problem with a single objective function. The difficul- 
ty here occurs instead in the set of constraints- the complementary slackness 
conditions. Several approaches have been suggested to take care of this difficulty. 
Bard and Falk [2] suggest a branch and bound approach where the com- 
plementary slackness conditions are replaced by a set of equations giving a 
separable non-convex program. Fortuny and McCarl [8] suggest a transformation 
giving a large mixed integer programming problem. 

Another class of solution methods tries to solve the linear two-level program- 
ming problem via multiple objective linear programming [3, 22]. Here the two 
objective functions are weighted together to give a standard linear programming 
problem. However, Wen and Hsu [23] have recently shown that in general, there 
is no such relationship between bilevel and bicriteria programming problems. 

Recently, local optimization methods on nonlinear programming have been 
used to approach the optimal solution smoothly. Such methods are for instance, 
penalty or barrier function methods and direct gradient methods (see, e.g., 
[13,141). 

The implicit enumeration methods mentioned above tend to generate large 
search trees while at the same time, an ever increasing set of constraints is 
encountered. Implicit enumeration methods as well as the branch-and-bound 
approach often fail to utilize and exploit specific structures inherent to the 
problem. On the other hand, because of the nonconvexity of the problem, local 
optimization methods do not generally guarantee a global optimal solution. The 
best proposed Branch and Bound procedure appears in Hansen et al. [9]. 

In this paper, our aim is to restate the linear two-level programming problem as 
a global optimization problem and develop a new solution method based on this 
approach. The most important feature of this new method is that it attempts to 
take full advantage of the structure in the constraints using some recently global 
optimization techniques [12]. 

Hopefully this will open up a new way for efficiently handling a large class of 
problems which would otherwise be very difficult to attack. In this connection, we 
should mention that a global optimization approach to bilevel programming in the 
nonlinear case has been earlier proposed in [1]. 

The paper consists of 7 sections. In Section 2 we establish some general 
properties which allow the problem to be restated as a reverse convex constrained 
program, i.e., a program which differs from a conventional linear program only 
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by the presence of an additional reverse convex constraint. Section 3 is devoted to 
preliminary transformations and to the formulation of a subproblem which plays a 
central role in the subsequent development. In Section 4 we establish a basic 
structural property for the constraints and outline the new method which seems to 
be particularly suitable for exploiting this structural property and for significantly 
reducing the dimension of the problem in many circumstances. Sections 5 and 6 
are devoted to the development of the algorithm. Finally, Section 7 concludes the 
work with an illustrative example. 

2. General Properties 

Observing that the inner problem involves only minimization over y (recall 
inequality (I)), we restate (3)-(4) as follows: 

where y solves the linear program R(x): 

min{dzry: A2x + Bzy<~g2, y~>0}. 

Without loss of generality we therefore subsequently assume that c 2 = 0. Denote 
by q~(x) the optimal value of R(x). Note that q~(x) = +~  if R(x) is infeasible. 

PROPOSITION 1. q~(x) is a convex polyhedral function. 

THEOREM 1. (P) is equivalent to the reverse convex programming problem: 

(Q) min crux + dry  

s.t. A ix + B ly  ~ gl (5) 

A2x + B2Y <<- g2 (6) 

x, y/> 0 (7) 

dry  <~ q~(x) . (8) 

Se t t ingA= A2 ,B=[_B2 j , g =  g2 we can rewrite (Q) as 

(Q) mincrx + dry  

s.t. Ax + By <- g (9) 

x1>0, y1>0 (10) 

dry  <~ q~(x) . (11) 

All constraints of (Q) are linear, except the last one which is reverse convex. 
Thus, (Q) is a linear program with an additional reverse convex constraint. 
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PROPOSITION 2. If (Q) is solvable, at least an optimal solution is achieved at a 
vertex of the polyhedron (9)-(10). 

Proof. For all (x, y) satisfying (9)-(10) we must have q~(x)~< dry. Since an 
optimal solution of (Q) must be an optimal solution of (P) it follows that 
dry = q~(x). Therefore, an optimal solution of (Q) must maximize the convex 
function q~(x) - dry over the polyhedron (9)-(10). But it is known that the set of 
all (x, y) where this maximum is attained is a union of faces of the polyhedron 
(9)-(10) (see Rockafellar, Corollary 32.1.1). Since an optimal solution of (Q) 
must minimize the linear function crx + dry over this union, it follows that at 
least one optimal solution is achieved at a vertex of the polyhedron (9)-(10). 

[] 

Methods for solving linear programs with an additional reverse convex constraint 
have been developed in recent years by several authors ([10, 12, 15, 18] and the 
references therein). However, since our problem (Q) has a specific structure, to 
solve it efficiently it is important to devise a method which could take advantage 
of this structure. 

In the sequel we will use the technique recently developed in [21] to substantial- 
ly reduce the dimension of the global optimization problem to be solved. For this, 
we observe that any two strategies x', x of the leader such that A 2 (x' - x) = 0 will 
cause the same response from the follower because R(x')= R(x). On the other 

T r hand, any two strategies y', y of the follower such that d2(y - y ) =  0 will have 
the same effect on the objective function of the leader. Therefore, from the 
overall point of view, two strategies (x', y ' ) ,  (x, y) are equivalent if A2(x' - x) = 

T p 0 and d2(y - y ) =  0. That is, what we are looking for is not really a strategy 
(x, y) but an equivalent class of strategies (x, y), with respect to the just defined 
equivalence relation. Consequently, instead of working in the original (x, y ) -  
space, we can work in the quotient space formed by all equivalent classes with 
respect to the relations A2(x' - x) = 0 and dT(y ' -- y) = 0. Since the dimension of 
this quotient space is at most 1 + rank A 2 we see that the size and hence the 
difficulty of the problem, depends mainly on the number of independent con- 
straints of the subproblem R(x). It is in fact the presence of R(x) which is 
responsible for the nonlinearity of the problem. 

3. Preliminary Transformations 

Let (x ~ yO) be an optimal basic solution of the linear program, obtained from (Q) 
by omitting the reverse convex constrains (11). If q>(x ~ = d ry  ~ then (x ~ y0) 
solves (Q). Therefore we shall assume that 

~ - ~ < o .  ( 1 2 )  
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Introducing the slack variables s = g - A x  - B y ,  we can write the system (9) (10) 
as 

A x  + B y  + s = g (13) 

x~>0,  y~>0 ,  s~>0.  (14) 

Setting s = (x, y, s), -A = (A, B, I)  with I the identity matrix of order m I + m 2 ,  

we obtain a more compact form 

A s  s  (15) 

With s o = g - A x  ~ - B y  ~ the point s = (x o, yO, s o) is a vertex of the polyhedron 

(15). 
Denote  by s  = (~i, i E J)  and s = (~i, i E N)  the basic and nonbasic vari- 

ables, respectively, relative to the basic solution ~0 of (15). (J  and N are subsets 
of the set { 1 , . . . ,  p + q + m 1 + m2} ). The basic variables can be expressed in 
terms of the nonbasic ones as 

~ j = ~ ~  N (~,~>0,  ~N~>0), (16) 

where W is a certain matrix. Setting now u = xw, /~ = ~o we can also write (15) 
(i.e. (9) (10) in the form 

Wu < [~ 

u > ~ O .  

Furthermore,  for each given u we can 
= (x, y, s) by the formulas 

~ N =  u , ~ , =  ~ ~  w ~ N =  [, - w u  

which give the affine mappings 

x = x  ~  Y = Y ~  

determine 

(17) 

( 1 8 )  

the corresponding vector 

(19) 

(20) 

where ~ and 7/ are known matrices. Note that u E R p+q (because INI = p  + q, 
IJI = ml + m2). Setting 

l(u) = c[(x ~ + $u) + d f ( y  ~ + nu) 

4,(u) ,p(x ~ + ~u) h(u) ~- o = , = d 2 ( y  + ~ ? u )  

we can finally rewrite (Q) in the form 

({)) min l ( u )  

s.t. W u  < 

u~>0 

r  - h(u)>-O.  

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Here  l(u) and h(u) are affine functions, q~(u) is a convex function and moreover ,  

the data is such that 

1. u = 0 is a vertex of the polyhedron 

D = ( u : W u < - b ,  u~>O}. 

2. qS(0) - h(0) < 0, i.e.,  u = 0 belongs to the convex set 

c = (u:  - h ( u )  < 0 ) .  

3. The closure of C is C = {u: ~b(u) - h(u) <~ 0} and we have 

D C _ C .  

(27) 

(28) 

(29) 

The latter property is due to the lower semi-continuity of ~o(x) (which 
implies that C is closed) and the fact that for any u E D the point (x ~ + ~u, 
y0 + ~Tu) satisfies (6), i.e.,  y0 + ~Tu is feasible to the linear program R(x ~ + 

T 0 ~u) (so that r  = q~(x ~ + ~u) <~ d2(y  + 71u) = h(u), hence (30)). 

Thus, using simple manipulations, the original problem (P) can be converted to 
the form (Q),  which amounts to 

min l (u )  s.t. u E D \ C  (30) 

where l(u) is an affine function, D is a polyhedron and C is a convex set with the 
properties 1, 2 and 3. To solve this problem with a tolerance e > 0 we can proceed 
according to the following scheme: 

Find a vertex u 1 of D 1 = D that does not lie in C; then find a point u 2 of 
O 2 = D1 n {u: l(u) <<- l(u 1) - e} that does not lie in C ( D  2 is obtained from D 1 
by cutting off ul) ;  and so on, until we get a polyhedron D r entirely contained 
in C (then the last vertex u r-l, if any, solves our problem). 

Obviously, a method for solving the following subproblem is central to this 

scheme: 

(sP) Given the convex set C defined by (28) and a polyhedron D C C such that 
0 E D n C, find a point of  D\C, if  there is one, or else establish that no 
such point exists (i.e., D C C). 

In the next section we shall deal with this subproblem. To ease the presentation, 
it is convenient to define here a construction which will be needed repeatedly in 
the sequel. 

Given a point u ~ 0 we denote by Ext(u) the last point where the ray from 0 
through u meets the boundary OC of C, i.e., Ext(u) = Ou, where 

o = sup(- : - 0 } .  (31)  
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The construction of Ext(u) amounts to solving a linear program as shown by the 
following. 

PROPOSITION 3. 0 is equal to the optimal value o f  the linear program 

max ~- (32) 
y ,T  

s.t. dT(y--y~ (33) 

A2(x ~ + "r~u) + B2y <~ g2 (34) 

y~>0, r~>0.  (35) 

Proof. If y and ~- satisfy (33)-(35) then y is feasible to the linear program 
R(x ~ + ~-~u), hence dry >I q~(x ~ + r~u) and consequently d~(y  ~ + z~lu) >~ dTy >>- 
p ( x ~  r~u) by (33), i.e., h(~'u)>t d?(~u). Conversely, if ~b(~'u)- h(ru)<~ 0 then 
there exists a y feasible to R(x ~ + ~-~u) such that dry = qb(ru) <~ h(ru) = d2(yT" o + 
-rT/u) hence y and ~- satisfy (33)-(35). [] 

NOTE. Assuming 0 <  + ~  we obviously have Ext(u)EOC. However, since C 
may not be open (unless ~o(x) and hence (h(u) is continuous), Ext(u) may belong 
to C or to C\C. We can then construct a point f i e  C in the line segment 
[u; Ext(u)] as follows. If Ext(u) E C we let fi = Ext(u). Otherwise, it follows from 
the convexity of C that every point in the line segment [u; Ext(u)], except Ext(u), 
belongs to C; then we let fi be any point of C in this line segment (for the 
efficiency of the algorithm to be developed below fi should be taken as close to 
Ext(u) as possible). To recall the construction of t~ from u we will write fi ~- Ext(u) 
in the sequel. 

If 0 --- + ~  then (a(,cu) - h(ru) <~ 0, Vr > 0, i.e., the convex function 4) is bounded 
above on the ray F from 0 through u. But then, by well known properties of 
convex functions (see, e.g., ([16]), Corollary 32.3.4), ~b achieves its maximum 
over F at point 0, i.e., d~(,cu) - h(ru) ~< qS(0) - h(0) < 0, V~- > 0. In this case we 
set fi = O=u, where 0~ is an arbitrarily large positive number. 

4. Finding a Point of D\C 

In this section we outline a method called "polyhedral annexation" [19] (see also 
[12, 21]) for solving the subproblem (SP) formulated in the previous section. 

Denote f (u)  = d?(u) - h(u). Since we wish to find a point 6 of D such that 
f(ff) = 0, while f (u)  <~ O, Vu E D, the problem can be solved by maximizing the 
convex function f (u)  over the polyhedron D. Indeed, if this maximum is negative 
then no point u E D\C exists; otherwise, this maximum is equal to 0 (and a 
maximizer can always be found which is a vertex of D).  

Several methods are currently available for solving convex maximization prob- 
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lems (see [12]). For our purpose here, however, an efficient method should take 
advantage of some specific structural properties of the convex set C which we are 
going to show. 

PROPOSITION 4. We have K C C, where K is the cone 

K =  {u: Z2(~u)~<0, dr0?u)>~0}. (36) 

Proof. Let u E K. We have to prove that f (u )  < 0. But it is easy to see that 
since A2(x ~ + ~u) <~ A2 x~ the feasible set of R(x ~ + ~u) contains that of R(x~ 
Indeed, if y is feasible to R(x~ i.e., if A2x~ B 2 y ~ g  2, y>~O then A2(x~ + 
~u)+ B2y<-g2, y>-O, which means that y is also feasible to R(x~ ~u). 

T 0 T 0 
Hence, 49(u) ~< q~(x ~ = q~(0). On the other hand, d 2 (y  + ~u) >I d2y by hypoth- 
esis. Therefore f (u )  = 49(u) - h(u) = r - d~(y  ~ + ~Tu) <~ 49(0) - d ry  ~ = 49(0) - -  

h(O) < o. [] 

Let 

A2 a2~ d2 r (37) = , = d z r / .  

For any set M C R" denote by M* the polar of M, i.e., the set of all v E R" 
satisfying vTu <- 1, VU E M. 

PROPOSITION 5. The polar K* o f  K is the convex cone generated by the m 2 

rows o f  A2 and -d2,  i.e., 

K * = { v = f l T A - A o d 2  : ) t~n"~  2, A o @ n + } .  

Proof. See [16], Section 14. Since K is a cone, v ~ K* if and only if vru <~ 0 for 
all u satisfying A2u~<0, --dTu~<0 and the result follows by applying Farkas 
Lemma. [] 

COROLLARY 1. The polar C* o f  C is contained in the cone K* with dim 
K* <~ rank A 2 + 1 ~ m z + 1. 

Proof. Since K C C (Proposition 4) it follows that C* C K* and from (37) we 
derive dim K* <~ rank A 2 + 1. [] 

Note that in most cases rankA 2 + 1 ~ p + q. This suggests that we should apply 
the version of polyhedral annexation method as developed in [21] to the problem 
(SP) in order to reduce the dimension of the problem to be solved. 

The basic idea of polyhedral annexation is to construct adaptively a sequence of 
expanding polyhedrons 

C C . . .  

approximating the convex set C more and more closely from the interior until we 
obtain a polyhedron P~ such that D C Pk or find a point u E D\C. 
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Specifically, we start from a polyhedron P1 such that 

L C P I C  C ,  (38) 

where L is the lineality space of K (the largest linear space contained in K). Since 
0 E L C P1, with each facet of P1 we can associate a vector v, normal to this facet, 
such that the hyperplane through this facet is described by the equation v ru = 0 
(if this facet contains the origin 0) or vru = 1 (if it does not). Denote by V1 the set 
of all vectors v associated this way with the facets of P1 and by V~ the subset of 1/1 
consisting of all vectors v associated with the facets that contain 0. Then P1 is the 
polyhedron determined by the system of linear inequalities 

T 
V U~flv (V ~ Vx) , (39)  

where/3 v = 0 if v E V~ and/3v = 1 otherwise. We shall refer to the system (39) as 
the defining system of P1. 

Knowing the defining system of Pa it is easy to check whether D C P1. Indeed, for 
each v E V 1 we can compute 

~(v) = max{v ru  : u E  O} .  (40) 

If it so happens that 

~(v) </~o, Vv~V~ 

then, obviously, D C P1 (and consequently, D C C, i.e. no point u @ D \ C  exists). 
Otherwise we consider 

1 v Ea rgmax{ /x (v ) - / 3~"  v ~ V 1 } ,  (41) 

1 u Ea rgmax{(v l ) ru  : u E  D } .  (42) 

Then/x(v  1) >/3~1 and u I is a vertex of D such that u ~ ~ P1. If, luckily, f ( u  ~) = O, 
we are done. Otherwise, since D C C we must have f ( u ~ ) < 0 ,  i.e., u l E  C and 
since u ~ ~ 0 we can construct ~1 = Ext(u ~) (see Note following Proposition 3) and 
form a new polyhedron P2 by 'annexing' t~ I to P, i.e., by taking 

P2 = conv (P1 tO {a l} .  (43) 

Clearly, L C Pa C P2 C C, so the process can now be repeated with Pz in place of 
P1. 

In this way we generate a sequence of vertices of D: u a, u 2, . . . ,  all of which are 
distinct. Since the vertex set of D is finite, the procedure is guaranteed to 
terminate in finitely many steps. 

A crucial point which should of course be clarified in the above procedure, is 
how to compute the defining system of P2 given by (43). This is where the 
structural properties of C which have been mentioned come into play. 

In fact, from (43) it is easily seen that if ~1 = 01ul then 
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{ P ~ =  P~ A v :  vTu a <~ , (44) 

i.e., the polar P~ of P2 is obtained from the polar PT of P1 by adjoining an 
additional linear constraint 

1 
{u 1, v) ~< ~ (45) 

(with the usual convention 1 / ~ = 0 ) .  Furthermore, it can be proved that (see, 
e.g., [16, 12]): 

PROPOSITION 6. Le t  P be a po lyhedron  containing 0 and let P* be its polar.  

Then the defining system o f  P is 

v~u<<-& (v~V) 
where  V is the set o f  nonzero  generalized vertices o f  P* and [3 v = 1 i f  v is a vertex, 

[3~ = 0 i f  v is an extreme direction. 

(By generalized vertex we mean either a vertex or an extreme direction, i.e., a 
vertex "at infinity".) 

Thus, 171 is given by the generalized vertex set of P~. Since P~ differs from P~ 
only by an additional linear constraint, the generalized vertex set V a of P~ (which 
yields the defining system of P2) can be derived from V 1 by currently available 
procedures (see [11, 12]). As for V 1 itself, it can be considered to be known since 
P1 is of our choice. 

Thus, instead of working with the polyhedrons P~, P 2 , . - . ,  it will suffice to 
work with their polars P~, P*2, . . . . . . .  Noting that P~ D P~ D and by (38) 
C* C P~ C L* we see that all these polars are contained in L* which is just the 
linear space spanned by K*. Therefore, the above procedure will actually operate 
in a space of dimension at most r a n k A  2 + 1 only, rather than in the original space 
(of dimension p + q). 

To complete our description of the method for solving (SP) it now remains to 
examine how to choose the initial polyhedron P1- 

5. Construction of the Initial Polyhedron PI 

Recall that P1 must satisfy condition (38), and must be such that the vertices of its 
polar P~ can be determined in a straightforward manner. 

Let a 1, . . .  , a m2 be the rows of the matrix .zi 2 . . . .  A2s and let a ~ -d2  da~r 
(see (36)) (all these a i, i = 0, 1 . . . . .  m2, are elements of RP+q). Select among 

0 1 i 
a ,  a . . . . .  a m2 a maximal subset of independent vectors, for example a ,  i E I, 

where I C { 0 , 1 , . . .  , m 2 } .  Then each a j ( j = 0 , 1 , . . .  ,m2) can be expressed 
uniquely as 
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a j = ~ , a q a  i ( j = O ,  1 , . . . , m 2 )  (46) 
iE l  

m2 . . . so that any vector v = E j=0 Aj aj of the space generated by a ~ a ~, a mz can be 

rewritten as 

m2 [ E  ] i~El(j_~0 ) m2 a i  E ti a i  
l) = E A .  oti.a i : a i j A  j = 

j=O ] t - i~ l  1 .J . _ iEI  

m2 where t t = 2 j=0 aqAj. Thus by the correspondence (isomorphism) 

m 2 m2 

v = ~ Aja i<--> t = ( t i ,  i E / )  where t i = ~ ~qAj (47) 
j=0 j=0 

the space generated by a ~ a ~ , . . . ,  a m2 can he identified with R I11. Since by 

Proposition 5 the polar K* of K is the convex cone generated by a ~ a 1 . . . . .  a m2 
and a j is represented by a j = ( a q ,  i E I )  E RIll, it follows that K* is represented 
by the convex cone in R III generated by the points a ~ O/1, . . . , a m2. We will 

construct P1 so that K C P1 C C (which implies (38)). Then P~ C K*, hence P~ is 
represented by a subset S~ of R Ift such that: 

} S~ C [ t  E R[II : t = A iaJ ,  Aj/>  0 ( ]  = 0, 1 , . . . ,  m2)  . (48) 
j=0 

Since P1 C P2 C . . . ,  and consequently P~ D P~* D . . . .  , we have 

S 1 D S 2 D . . . 

In this manner  all the S k will be contained in RIll, and we will work basically in 
R Ill (recall that I C (0, 1 . . . .  , m2} , i.e.,  ]II ~< m2 + 1). 

Let  us now describe the construction of P1. 
The simplest choice is to take P1 = K,  so that P~ = K* is the cone generated by 

the vectors a ~ a x, . . . ,  am'-, i.e., 

m2 } 

Sl=lt~Rl~l:t=~,,~f,,~j>~O ( ] = 0 , 1 , . . . , m 2 )  �9 
j=0 

Substituting a J=  (aq, i ~ I )  we have 

m 2 

ti = E A jo l i  I , 
j=0 

hence,  taking account of the fact % = 1 for i ~ I and aq = 0 for i, j E I ,  i ~ j ,  

ti = Ai + E ol i jAj  (i E l )  . 
jqt l  

Thus, S 1 can be described as the set of all t E  RIII for each of which there exists 

(t, ,~) satisfying 
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t i -  ~ aq)t:~O ( i ~ I ) ,  A j ~ > 0 ( j r  
j~tl 

Consider now the polytope 

T ~ = { t : t = ~ A , a ' ,  ~ A j = I ,  A,>~OVj}. 
J J 

Clearly the set of extreme directions of the cone S 1 can be identified with the set 
of vertices of T 1. To compute the latter set, we use the following 

PROPOSITION 7. Every vertex t of T I corresponds to a vertex (t, h) of the 
polyhedron 

t i - ~', aUA j >>- 0 (i E I) (49) 
j~tl 

Xj>~O ( j~ t I )  (51) 

and vice versa. 
Proof. It can readily be verified that (t, A), (t', h ' ) ,  (t", h") satisfy (49)-(51) 

and (t, h ) =  [(t', A ' )+  (t", h")]/2 if and only if t, t', t" belong to T 1 and 
t = (t' + t")/2. Hence, (t, h) is a vertex of the polyhedron (49)-(51) if and only if 
t is a vertex of T 1 . [] 

Thus, the generalized vertex set V 1 of S 1 can be computed by computing the 
vertex set of the polyhedron (49)-(51). 

When the vectors a;, i = 0, 1 . . . .  , m 2 are linearly independent (which occurs, as 
can easily be checked, if the matrix A 2 has full rank and d 2 r 0), the polyhedron 
(49)-(51) reduces to the simplex 

t i~O ( i = 0 , 1 , . . . , r n 2 ) ,  ~ t i = l  (52) 

and the set of its nonzero vertices is V 1 = (a ~, i = 0, 1 , . . . ,  m2}. 

CASE WHERE 0 E int C 

If 0 E int C (which is the case when x ~ E intdom ~o(x)) then it is easy to construct 
the initial polyhedron P1 so that S 1 is a simplex of full dimension in R I/L (then all 
the S k will be bounded and we can set/3 v = 1 in systems like (39)). 

Specifically, let d i ~- O Ext(d) (see Proposition 3) and/~ = 0 Ext(b), where b is 
the barycentre of the simplex spanned by - a  i, i E I and 0 is a positive number 
close to, but smaller than 1. Define 

Ml=COnv(b, a i ( i E I ) } ,  L = { u :  (ai, u) =O, V i E I } ,  P I = M I  + L .  
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P R O P O S I T I O N  8. The above polyhedron P1 satisfies (38) and 0 E int PI" The set 
S~ that represents its polar according to (48) is a simplex of full dimension in RIII 
given by the system. 

~ti(ai, dJ)<-I ( j ~ / ) ,  (53) 
i ~ l  

ti(a i,/)) ~< 1. (54) 
i E l  

Proof. Clearly L C P1 and from (36) (37) 

K = ( u :  (ai, u)<~O ( i = 0 , 1 , . . . , m : ) }  

so that L is the lineality space of K. Since obviously 0 E relint M1, it follows from 
the definition of Ma that M a C 0(~, hence M 1 -I- L C 0(C + K) C 0C, which implies 
P~ C C. Furthermore,  since the subspace spanned by M1 is just L • it is easily seen 
that 0 E int Pa. This proves the first assertion of the proposition. 

To prove the second assertion, observe that P~ = M~ fq L* (* denotes the 
polar). But L * = L • = {v: v = Z~i  tia~}, while M ~ = { v :  ( v, dl) <~ l (i E I), 
(v ,  b )  ~< 1}. Therefore,  P~ is the set of all v = E tga' such that t i, (i E I) ,  satisfy 
the system (53) (54). Finally, the system 

~_,ti(ai, d i ) = l  ( j E I )  (55) 
iC1 

has a unique solution since its determinant is nonzero (Gram's determinant of 
vectors a ~, i ~ I).  Similarly, each system obtained from (55) by substituting/) for 
some d j, has a unique solution. This implies that the polyhedron (53) (54) is a 
polytope with exactly [I1 + 1 vertices, i.e. is a simplex of dimension 1I]. [] 

NOTES 

(i) When a ~ a l , . . . ,  a m2 are linearly independent (while ~ int C) there is a 
simpler way to construct P1. Indeed, let P1 = ~ + K, where ~ = ~- Ext(w) 
for some ~- E (0, 1) and w is the unique solution of the system (a  i, w) = 1 
( i @ I ) .  Since - w E i n t K ,  K C C ,  we have 0 E i n t  (ffp+K), f f~+KC 
~-C + K = ~-(C + K) = ~-C, i.e., 0 E int PI and P~ C C. Furthermore,  if v~ = 
Ow then P ~ = { u :  (a i,u)<~O (i=O, 1 , . . . , m 2 )  ) and consequently, 
P1 = c~ ai/O, i = O, 1 , . . . ,  m2} so that the simplex S 1 is defined by the 
system 

m2 1 
t i~O (i=O, 1 , . . . , m 2 ) ,  ~ t / ~  < -  

i = 0  0 " 

Obviously, the vertices of S 1 a r e  Oe i (i = 0, 1 , . . . ,  m2) , where e i is the i-th 
unit vector of R I11. 
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6. Algorithm for Solving ( Q )  

We now incorporate  the above method for solving the basic subproblem (SP) into 
the iterative scheme outlined in Section 3 in order  to obtain an algorithm for 

solving the original problem (P),  or equivalently, ((~). 

But  before  describing the detailed algorithm, we observe that given a feasible 
solution u I which is a vertex of the polyhedron D it is sometimes possible to 
derive a bet ter  feasible solution with relatively little cost in the following way. 

Since u ~ cannot be optimal  for the linear program 

minimize l(u) s.t. u ~ D (56)  

by performing a simplex pivot o n  U 1 we can obtain a vertex w of D neighbouring 
to u I which has l (w)  < l (u l ) .  If  this vertex w happens to satisfy f ( w )  = 0 then it 
provides a new feasible solution better  than u 1. We can then continue this process 
with w replacing u 1, and so on, until we reach a vertex a ~ of D such that no vertex 

u adjacent  to ~7 1 with l ( u ) < l ( u  1) satisfies f ( u ) = 0 .  We shall refer to this 

improvemen t  process as an improvement  by local moves.  Thus, before beginning 
the search for a feasible solution u 2 such that l(u z) < l(u 1) - e, it is useful to try to 

improve  u I by local moves,  whenever  possible. 

ALGORITHM 

Compute  a basic optimal solution (x ~ yO) of the linear program obtained f rom 
(Q) by omitting the reverse convex constraint (11). If  q~(x ~ r 0 = d 2 Y ,  stop; (x ~ yO) 
solves (P).  Otherwise,  rewrite the problem into the form (t)) ,  with x = x ~ + ~u, 

Y = yO + ~Tu. Define 49(u) = q~(x ~ + ~u), h(u)  = d r ( y  ~ + ~Tu), A2 = A2~,  d2 = 
T d2"o. Select a tolerance e > 0. 

Initialization. Let  a ~ = - d 2 ,  and let a 1, . . . , a m2 be the rows of ~z~ 2. 

Take  a maximal  subset {a':  i ~ I}  of independent  vectors among a ~ a ~, . . . ,  a m2. 

Define S 1 to be the cone in R Ill generated by the vectors a", i = 0, 1 , . . . ,  m 2. 

Compu te  the set 171 of extreme directions of S~ (i.e.,  the vertex set of T 1 by 
Proposi t ion 7). For  each t EVa def ine /3(0  = 0. 

Set D a = D, N 1 = V~, k = 1 (k is the iteration counter; N k is the set of  newly 
genera ted  vertices of  Sk). 

Iteration k = 1, 2 , . . .  

k.1. For  each i =  (~, i E I )  E N k solve the linear program 
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LP(t-) max{i~elt-i(a i, u):  u E  Dk} 

(see comment (i) below). Let u(t-) and/z(t--) be a basic optimal solution and 
the optimal value of LP(t-) respectively. 

k.2. Delete all i-E N k such that /z(t-)~</3(t-) (see comment (ii) below). Let R k 
denote the collection of the remaining members of the set V k. 
If R k = I~, terminate. If D k = D conclude that (P) is infeasible, if D~ ~ D, 
accept (x k-l, yk-1) = (x 0 + ~Uk-1, yO + 7lUg-l) as an e-optimal solution. 

k.3. If f(u(t- ' ))<0 for all / -ER  k then let u k = u  k-~, D k §  k. Otherwise, 
f(u(t-)) = 0  for some ( E  Rk, then let u k =  u(t-), or let u ~ be any better 
feasible solution that can be obtained by local moves from u(t-), and define 

Dk+ 1 = O k fq {u : l(u) <<- l(u k) - e} 

(see comment (iii) below). 
k.4. Select tkEargmax{/z(t-) :  t -ERk}.  

Compute Ext(u(tk))  then 0g such that OkU(t k) -~ Ext(u(tg)) and define 

Sk * l = Sk fq { t : iEI~" ti ( ai' u(tk) ) <~ ~kk ) 
(see comment (iv) below). 
Compute the generalized vertex set Vk§ ~ of Sk§ 1 (from our knowledge of Vk, 
see comment (v) below). Let Nk§ 1 = (Vk§ } and for each t E N  k§ 1 
define fl(t) = 1 if t is a finite vertex and fl(t) = 0 if t is a vertex at infinity (an 
extreme direction). 
Set k ~-- k + 1 and return to step k.1. 

COMMENTS 

(i) In Step k.1, since { E  N k C Vk, it corresponds to a generalized vertex of P~, 
i.e., a facet of Pk, namely the facet whose normal is v(t-) = Eic 1 tia i. Then 
the linear program LP(t-) is just to maximize the function (v,  u)  over the 
polyhedron D k (see (40)). 

The point u(t-) is the point of D k that lies the farthest possible beyond the 
facet v(t-) and /z(t-)-/3(t-') measures the distance from u(t-) to the hy- 
perplane of this facet. A positive feature of this algorithm is that for fixed k 
all the problems LP(t) have the same constraints while for different k's only 
the right hand side of the additional constraint l(u) <~ l(u k) - e may change. 

(ii) If/x(t-) <~/3(t-) for some i E  N k then all of the polyhedron D k lies strictly in 
the halfspace (v(t-) ,u)~< 13(t-). Therefore, if R k =~ ,  then D k lies in the 
intersection of all the halfspaces ( v, u)  ~< fly that correspond to different v's 
in the defining system of Pk (i.e., to different facets of Pk), hence D k C 
P~ C C. In this event, if D~ = D, then obviously (()) is infeasible; otherwise, 
a feasible solution u ~§ to (Q) is already known that is the best so far 
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obtained: then U k+l solves (t)), i.e., (X k-l, yk-1)  = (x o + ~uk-1 yO + rluk-1) 

solves (P), within the given tolerance E. 
(iii) In Step k.3 a vertex u ~ of D k may be identified that lies outside C (i.e., is 

feasible to problem (t))). Then, the points u E D k such that l(u) > l(u ~) - E 
are no longer of interest for us, so we can restrict our further search to the 
part D~+ 1 of D contained in the halfspace l(u) <<- l(u ~) - ~. 

(iv) t k E  arg max{/x(t-) : i-E Rk} corresponds to that facet of Pk beyond which a 
vertex of D k lying outside C has the best chance of being found. Therefore 
the procedure prescribes expanding Pk beyond this facet by "annexing" 
~(t k) ~ Ext(u( tk)) ,  where u(t k) is the vertex of D k that lies the farthest from 
this facet. In terms of polars this "annexation" operation amounts to a 
restriction of S k by means of the additional constraint (v, u(t k) ) <<- 1/Ok (the 
variable being v). Since v = r.ie ~ tia ~, this constraint, in terms of the variables 
ti, is: 

1 
t i (a i, u( tk))  <_ - - .  

i~l Ok 

(v) To compute the generalized vertex set Vk+ 1 of Sk+ 1 = S kc) {t: 
Zie I t~(a i, u( tk))  <~ 1/Ok}, observe that the generalized vertex set V k of S k is 
already known. Therefore, Vk+ 1 can be derived from V k using for example 
the procedure of Horst-Thoai-de Vries (see [11] or [12]). 

(vi) As long as D k is unchanged, the algorithm is a polyhedral annexation 
procedure for solving the subproblem (SP) with D = D k. As seen in Section 
2, this procedure is finite. Hence, after finitely many steps, either D~ 
changes or the procedure terminates because R k = tl. Since each change of 
D k is connected with a decrease of the objective function value at least by 
E > 0, finiteness of the algorithm is assured. 

(vii) In step k.4 the value O k may be taken such that OkU(t k) is arbitrarily close to 
Ext(u(tk)) .  This suggests that in practice one could simplify the algorithm by 
taking OkU(t k) exactly equal to Ext(u(tk)) .  With this simplification the 
algorithm will still be correct, provided in step k.2 all ? ~  N k with /x(t-)= 
fl(t-) are retained (not deleted) and in Step k.4 if tz(t k) = 1 then u(t ~) must 
be replaced by a basic optimal solution of the problem LP(O~'), with 
0 < 0 < 1 and 0 very close to 1. 

7. Il lustrative Example 

For illustration we consider the following example taken from [2] (Example 2): 

(P) min - 2 x  l + x  2+0 .5y  1 

s.t. X 1 + X 2 ~ 2  

X1,X2>~O 
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I.  

w h e r e  y solves 

(R(x))  min  - 4 y ~  + Y2 

s.t.  - 2 X l  + Yl - Y2 ~< - 2 . 5  

Xl - -  3 X 2  + Y2 ~< 2 

Yl, Y2 ~> 0 .  

Prel iminary  transformations 

�9 Solve  the  l inear  p r o g r a m  

min  

s.t.  

--2X 1 + X 2 "~- 0.5y  1 

--2X1 + Yl + Y2 ~< --2.5 

Xl -- 3Xz + Y2 ~ 2 

x I + x 2 ~ < 2  

x1, x2, Yl, Y2 i > 0 .  

A bas ic  op t ima l  so lu t ion  o f  this  l inear  p r o g r a m  is 

x ~  y O = ( 0 , 0 )  

wi th  q~(x ~ = m i n ( - 4 y  a + Y2: - Y I  + Y2 ~> - 1 . 5 ;  -Y2  ~> 0; YlY2 <~ 0} = - 6  < 
d~y  = O. 

Wri te  the  p r o b l e m  in the  fo rm ( I ) ) :  

S lack  var iab les :  s~, s2, s 3. Basic  var iab les :  Xl, x2, Sl, 

Se t t ing  Yl = U l ,  Y2 -- u2 ,  s2 = II3, s3 = u4 ,  w e  have  

x I = 2  - 0 . 2 5 u  2 - 0 . 2 5 u  3 - 0 . 7 5 u  4 

X 2 = 0 + 0 . 2 5 U  2 + 0 . 2 5 U  3 - - 0 . 2 5 U  4 

S 1 = 1 . 5  --U 1 +0.5U 2 --0.5U 3 --1.5U 4 

and  so x = x ~ + ~u, y = yO + *lu with 

(o ~ (1oOO Oo) 
~:= 0.25 0.25 - 0 . 2 5 / '  ~ =  1 0 " 

T h e  p r o b l e m s  b e c o m e s  

( 6 )  m i n l ( u )  s.t .  u E D ,  f ( u ) = O ,  

w h e r e  

D = 

l(u) = - 4  + 0 .5u  1 + 0 .75u z + 0.75u 3 + 1 . 2 5 u  4 

(u :  0 .25u z + 0 . 2 5 u  3 + 0 . 7 5 u  4 ~<2 

-- 0.25U 2 -- 0.25U 3 + 0.25u 4 ~< 0 

gl  - -  0"5U2 "[- 0"5U3 "~ 1"5U4 ~ 1.5 
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Also 

U = (Ul, U2, U3, U4) >/0)  

f(u) = r  + 4 U  1 - -  U 2 �9 

q~(u) = { - 4 u  1 + uz: 0 . 5 U  2 -[- 0.5/./3 "]- 1 .5U 4 -b Yl + Y2 ~ 1 .5  

- -U 2 - -U 3 --b Y2 ~< 0 

Yl ,  Y2 ~ 0} 

o (4, - 1 ,  0 ,0)  a = a 1 = (0,  0 .5 ,  0 .5 ,  1 .5 ) ,  

a 2 = (0, - 1 ,  - 1 , 0 )  

We now solve the problem within tolerance e = 0.1. 

H. Initialization 

a 2 Since a ~ a ~, are linearly independent,  we take 

S~ = ( t  = (to, tx, t2) : t i/> 0 (i = 0, 1, 2)}.  

Then V 1 = ((1, 0, 0)*; (0, 1,0)*; (0, 0, 1)*}, where the asterisk indicates 
extreme direction 

I lL Iteration 1 

D I = D ,  N 1 = { ( 1 , 0 , 0 ) ;  ( 0 , 1 , 0 ) * ;  ( 0 , 0 , 1 ) * } .  

Step 1.1. 
For each t-E N 1 solve LP(t-) where 

LP(t-): 

This yields: 

[ : (1, 0, 0)* (0, 1, 0)* (0, 0, 1)* 
u(t-): (5.5, 8 , 0 , 0 )  (0, 1.5,0, 1.5) ( 0 , 0 , 0 , 0 )  
/z(t~ : 14 3 0 

Step 1.2 
t =  (0, 1, 0)* is deleted. R 1 = {(1, 0, 0), (0, 1, 0)}. 

a n  

max {{o(4Ul - u2) + i l ( 0 . 5 u  2 + 0 . 5 u  3 + 1.5u4) ~- t 2 ( -  u2 - -  /,/3) } �9 
u ~ D  1 

A simplex pivot (for minimizing l(u) over D)  performed from u(t-) yields 
u i = (1.5, 0, 0, 0) with f (u  1) = 0 and l(u 1 ) = -3 .25.  Thus, the current best solution 

Step 1.3. 
For ? =  (0, 1, 0)*, f(u(t-)) = 0, hence u(t-) = (0, 1.5, 0, 1.5) is feasible with l(u(t-)) = 
- - 1 .  
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is U 1 = (1.5, 0, 0, 0), which corresponds to x a = (2, 0), yl = (1.5, 0). (Note that 
since min( / (u) :  u E D} = - 4  the optimal value of (Q) lies in the interval 
( - 4 ,  -3.251).  

Define 

D 2 = D 1 n {u: 0.5u 1 + 0.75u 2 + 0.75u 3 + 1.25u 4 <~ 0.65}. 

Step 1.4 
Select t I = (1, 0, 0)* ~ arg max {/z(t): t E NI}. We have u(t 1) = (5.5, 8, 0, 0) and 
Ext(u(tl)) = 01u(t I) with 01 = 9 ,  so 

S 2 = S 1 n (t: 7t 0 + 2 q  -4t2~< 4 } ,  

112={ ( z 0 ,0) ;  (~5,1 ,0) ;  (0 ,0 ,1)* ;  (0 ,2 ,1)* ;  (4 ,0 ,7)*}  I-'05, 

N z = {  ( 2 1--65,0,0); ( ~ ,  1,0);  (0 ,2 ,1)* ;  ( 4 , 0 , 7 ) * } .  

IV. Iteration 2 

Step 2.1. 
For each i E  N z solve 

LP(t-) : max{i-o(4U 1 - / - / 2 )  "1- t 1 ( 0 . 5 u 2  "[- 0.5/-/3 "[- 1"5U4) + t-2(--U2 -- U3)}" 
u E D  2 

This yields for the vertices in the list N2: 

/z(t-) ~< ~o5 x 4 and/z(t-) ~< ~ x 3.  

(see Step 1.1). Hence/x(t-) < 1 =/3(t-) for these ?s. 

For the other elements of N 2 we have 

t : (0, 2, 1)* (4, 0, 7)* 
u(t-) : (0, 0.325, 0, 0.325) (1.3, 0, 0, 0) 
/z(t--) : 0.975 20.8 
f(u(t-')) : -5 .025 - 0 . 8  

Step 2.2. 
The two vertices in the list N 2 are deleted. So 

R 2 = ((0, 2, 1)*, (4, 0, 7)*}.  

Step 2.3. 
Since f(u(t-)) < 0 for all ? E  R 2, we let D 3 = D 2 ,  u 2 = u 1. 

Step 2.4. 
Select t z = (4, 0, 7)*. Then Ext(u(t2)) = Ozu(t 2) with 0 = 60/52, 

S 3 = S  2 n ( t :  6t o~<1} 
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v 3 = { (  2 1-~,0,0); (1~,1,0);  ( 1 , 0 , 7 ) ;  (1 ,0 ,  1~0); ( I ,  ~-s, 7 ) ;  (0 ,0 ,1)*;  
(0, 2, 1)*} 

5/3 = {(1 ,0 ,  ~ ) ;  (1 ,0 ,  1-~o); (1, ~ ,  7 ) } .  

V. Iteration 3 

Step 3.1. 
Solving LP(t-) for each i ~  N 3 we obtain/z([)  = 13/15 for the first element of N 3 
and/z(t-) < 1 for the two other elements. 

Step 3.2. 
All the elements of N 3 are deleted. So 

R 3 = {(0,2, 1)*}. 

Step 3.3. 
D 4 = D 3 ,  u 3 = u 2 . 

Step 3.4. 
t 3 = (0, 2, 1)* with u(t 3) = (0, 0.325, 0, 0.325) (see step 2.1). We have Ext(u(t 3) -- 
Oau(t 3) with 03 = 60/13, therefore 

S 4 ~-- S 3 0  {t: - t  o + 2t I - t 2 ~ 2} 

V 4 = V3',{(0, 2, 1)*} tO N 4 

U 4 = {(0, ~ ~); ( 2  32 16 . ~ ,  ~-~), ( 0 ,  19 , , 4"5, A ) ;  ( ~ 2 ,  3 ,  2 ) ;  ( 1 ,  131 

, ~ , - ~ ) ;  ( 0 , 1 , 2 ) * } .  

VI. Iteration 4 

Step 4.1. 
Solving LP(t-) for each t-~ N 4 yields/,(t-') < 1 for every vertex and/z(t-) = 0 for the 
extreme direction in this list. 

Step 4.2. 
All the elements of N 4 are deleted. Hence, R 4 = ~  and we conclude that 
u 3= (1.5, 0, 0, 0) solves (Q), i.e., a (global) optimal solution to (P), within 
tolerance 0.1 is 

2 = (2, 0 ) ,  y = (1.5, o) 

with objective function value -3.25.  From the computations, it can even be 
checked that this is actually an exact optimal solution. (Incidentally, we see that 
the solution x = (1, 0), y = (0.5, 1) indicated in ([2]), with objective function 
value -1 .75,  is not an optimal one). 

Also note than an optimal solution has already been found at the second iteration 
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but the algorithm has to go through two more iterations to prove the optimality of 
this solution. 

Computational results with this algorithm as well as comparisons with an alterna- 
tive branch and bound algorithm will be discussed in a subsequent paper. 
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